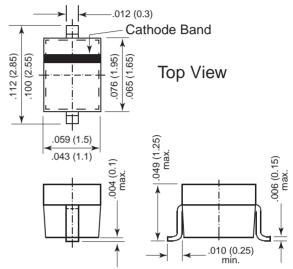
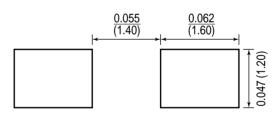

Vishay Semiconductors formerly General Semiconductor

Tuner Diodes

SOD-123 (BB721)


Mounting Pad Layout SOD-123 (BB721)

Features


- Silicon epitaxial planar capacitance diodes with very wide effective capacitance variation for tuning the whole range of UHF television bands.
- Two BB721/BB721S tuner diodes in series are used for direct satellite receivers.
- These diodes are available as singles or as matched sets of two or more units according to the tracking condition described in the table of characteristics.

SOD-323 (BB721S)

Dimensions in inches and (millimeters)

Mounting Pad Layout SOD-323 (BB721S)

Mechanical Data

Case: BB721 = SOD-123 Plastic Case BB721S = SOD-323 Plastic Case

Weight: BB721 = approx. 0.01g BB721S = approx. 0.004g

Packaging Codes/Options:

SOD-123: D3/10K per 13" reel (8mm tape), 30K/box D4/3K per 7" reel (8mm tape), 30K/box SOD-323: D5/10K per 13" reel (8mm tape), 30K/box D6/3K per 7" reel (8mm tape), 30K/box

Maximum Ratings and Thermal Characteristics (Tc = 25°C unless otherwise noted)

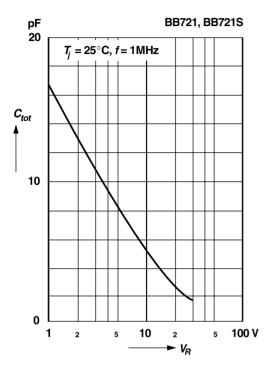
Parameter	Symbol	Value	Unit V	
Reverse Voltage	VR	32		
Junction Temperature	TJ	125	°C	
Storage Temperature Range	Ts	-55 to +125	°C	

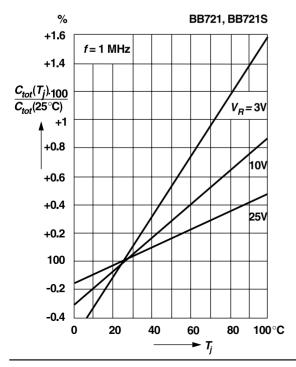
Document Number 88155 15-May-02 www.vishay.com

Vishay Semiconductors formerly General Semiconductor

Electrical Characteristics (Tc = 25°C unless otherwise noted)

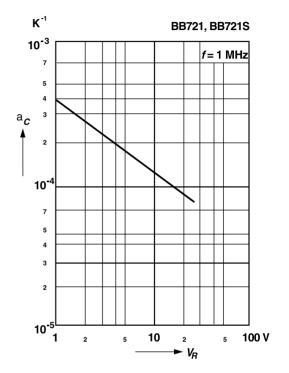
Parameter	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage at I _R = 100μΑ	V _{(BR)R}	32	_	_	V
Leakage Current at V _R = 30V	IR	-	-	10	nA
Capacitance f = $1MH_Z$ at $V_R = 28V$ at $V_R = 25V$ at $V_R = 2V$	Ctot	1.9 2.1 14.01	_	2.29 2.39 16.33	pF
Effective Capacitance Ratio $f = 1MHz$ at $V_R = 1$ to 28V	<u>Ctot (1V)</u> Ctot (28V)	8	_	_	_
at $V_R = 2$ to 25V	$\frac{C_{tot} (2V)}{C_{tot} (25V)}$	5.86	_	7.78	-
Series Resistance at f = 470 MHz, Ctot = 14 pF	rs	_	_	0.8	Ω
Series Inductance	Ls	_	2.5	_	nH

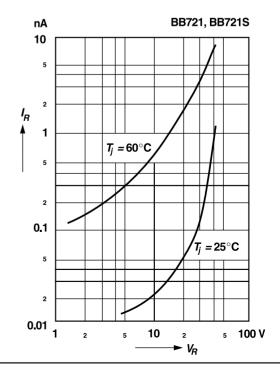

For any two of six consecutive diodes in the carrier tape, the maximum capacitance deviation in the reverse bias voltage of VR = 0.5 to 28V is 3%


Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

Capacitance

versus reverse voltage


Relative capacitance versus junction temperature


Temperature coefficient of capacitance versus reverse voltage

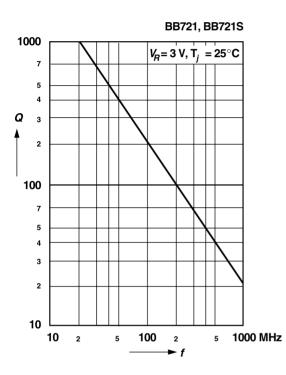
BB721 and BB721S

Vishay Semiconductors formerly General Semiconductor

Leakage current versus reverse voltage

Document Number 88155 15-May-02

BB721 and BB721S


Vishay Semiconductors formerly General Semiconductor

Ratings and

Characteristic Curves (TA = 25°C unless otherwise noted)

Q-Factor

versus frequency

